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F i n i t e - E l e m e n t  A l g o r i t h m .  In most papers a linear approach has been used to compute truss and 
frame structures. We propose an approach in which a single effective algorithm is used to study both the 
geometrically nonlinear subcritical state and the stability of spatial truss and frame structures. 

Let us consider an arbitrary spatial frame structure with rigid nodes under arbitrary load. As a finite 
element, we take a rectilinear bar of constant cross-section with the z axis coinciding with the axial line and 
the y and z axes directed along the central axes of the bar's cross-section (Fig. 1). 

Assuming the smallness of elastic strains and rotation angles, the kinematic relations for bars have the 
form [1] 

1 2 1 2 
6 = Us -i t- ~ W  1 "4- ~ W 2 ,  Xl  : Wls,  X2 - -  W2s,  X s  = ~Os, wa = - w = ,  w2  = - V s ,  ( 1 )  

where u, v, and w are displacements along the z, y, and z axes; wa, w2, and %o are the angles of small rotations 
about the y, z, and x axes; e is the axial strain; X1, X2, and X3 are changes in curvatures and torsions; and" 
subscript s denotes differentiation with respect to s. The statistical relations are written as 

T = EFe,  Ml = EJ1x1, M2 = EJ2x2, Ms = EJkX3, G = E/[2(I  + v)] 

(J1, ,/2, Jk are the inertia moments of the cross-section of the bar under bending curvature and torsion; E is 
Young's modulus; and u is Poisson's ratio). 

To approximate the displacements in the finite element we choose a linear polynomial for displacements 
u and a cubic one for displacements v and w: 

u = noEl(s) + uaE2(s), v = voE3(s) + vlE4(s) + w20Es(s) + w21E6(s), 

w = w0E3(s) + wlE4(s) - -  wloEs(s) - wnE6(s).  (2) 

Here, El, E2, E3, E4, Es, and E6 are Hermitian polynomials: 

E1 = 1 - s /L ,  E2 = s/L,  E3 = 1 - 3s2/L 2 + 2sS/L s, 

E4 = 3s2/L 2 - 2s3/L 3, E5 = 3 - 2s2/L + s3/L 2, E6 = - s 2 / L  2 + s3/L2; (3) 

u0, v0, w0, col0, w20 ul,  vl, wl, wn ,  and cv21 are displacements and rotations at nodes 0 and 1 in the finite 
element; and L is the length of the element. 

The approximation of rotations wl and w2 follows from relations (1) and (2), and for torsion ~o we use 
the linear approximation ~o = ~oE1(s) + ~lE2(s)  (~0 and ~ol are the nodal values of torsion angles). 

For simplicity we divide T and ~ into linear and nonlinear constituents: 

1 
r  T t=  EF~,, T , ,= EF~n, e t=Us,  e , ,= ~ (w  2+w2).  
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Fig. 1 

The potential energy of the bar is given by 

L L 

We = (Tr + MiX1 + M2X2 + Maxa) ds = ~ (Ttez + M1X1 + M2X2 + M3X3 Jr Tie,, Jr T, el + The,) ds. 
0 0 

The nonlinear deformation and stability of the bars will be studied by the Newton method and the 
energy criterion of stability. To this end, we consider the first 6We and second 62Wc variations of the strain 
energy: 

L 

6wo = f (T,6e, + MinX1 Jr M26X2 Jr Ma6X3 + TI~r Jr T,6et Jr Tn6r ds, 
0 

L 
~2W, = f (6etEF6e, Jr 6x1EJ16x1 + 6x2EJ26x2 Jr 6x3EG6x3 

0 

Jr 6eiEF6e. + 6snEF6ez + 6e.EF6en + T162r + Tn62e.) ds, 

6Sn = ws6ws Jr Vs6Vs, 62r = 6w,6w~ + 6v~6vs. 

We take the displacements and the angles of rotation and torsion as nodal unknowns of the bar finite 
element and introduce the vector of the nodal unknowns 

u'e = N 0 , ' 0 ,  ~0,  ~a0, ~20, ~1, ,1 ,  ~1,  ~ n ,  ~21 } 

(superscript t denotes transposition). 
The equation of the Newton method is now written as 

H e ( u e )  6ue = P c  - G e ( u e ) ,  

(4) 

(5) 
where Pe is the vector of external forces and moments applied to the element; the Hessian matrix He and the 
strain-energy gradient Ge are determined from the relations 

~i2W, = 5u,He(u~)Sue, 6We = Ge(ue)~ue. (6) 

Taking into account expressions (2)-(6), the Hessian matrix He and the gradient Ge are represented 
a,s 

L 
3 2 / 3 2 1 2X 

0 

L 
l v,(v 2 Jr w2)]Gl 2 Jr l ws2)G2} ds, X w,(v: + w2)]G,l + [u,v, + ~ ~(v: + 

0 

Gll  = {0, 0, E3s, 0, -Ess ,  0, 0, 0, E4~, 0, -E6~} t, 

(7) 

(8) 
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G12 = {O, E3s,O,O,O, Ess,O, E4s,O,O,O, E6s} t, G2 = {Els,O,O,O,O,O, E2s,O,O,O,O,O} t. 

We write expressions for nonzero matr ix  elements Kz, K n ,  K12, K21, K22, and K23 (the symmetric 
side is omit ted)  

Kl,ll = KI,77 = -Kl,17 = dl/L, KI,22 = KI,ss = -KI,28 = 12d3/L 3, KI,44 : Kt,1010 = -KI,410 = d4/L, 

Kl,33 = KI,99 = -KI,39 = 12d2/L 3, K/,s5 = Kl,1111 = 2K1,51] = 4d2/L, K1,66 = K/,1212 = 2K1,612 = 4d3/L, 

K~,35 = Ki,311 : -KI ,59  = -Ki,9 11 : -6d2/L2, KI,26 : KI,212 ---- -Kz,6s = -LKI,s 12 = 6d3/L2, 

dl -'- EF; d2 = E J1, d3 -'- E J2, d4 = G J}: 

Kl1,13 -- ElsE3s, Kl1,15 -- -ElsEss,  Kll,ls = ElsE4s, Kl1,111 = -ElsESs, 

Kll,37 -- E2sE3s, Kl1,57 = -E2sEss, Kll,7S = E2sE4s, Kll,711 -- -E2sEss; 

K12,12 = ElsEas, K12,16 = -ElsEss,  K12,1s = ElsE4s, K12,112 = ElsE6s, K12,27 = E2sE3s, 

K12,67 -- E2sESs, K12,78 -- E2sE4s, K12,712-- E2sE6s, K21,33 -- E23s, K21,35 -- -E3sE5s, 

K21,39 = E3sE4s, K21,311 : -EssE6s, K21,55 -- E2s, K21,59 = -E4sEss, K21,511 - EssE6s, 

K21,99 = E2s, K21,911 = -E4sE6s, K21,1111 = E2s; 

K22,23 = E2s, K22,25 = -EasEss, K22,29 = EasE4s, K22,2 ll ----- -EasE6s, K22,se = -E52s, K22,ss = -Ei .Ess,  

K22,512 : -EssE6s, K22,36 = E3sEss, K22,38 -- E, sE4s, K22,312 -- EzsE6s, K22,69 -- E4sEss, 

K22,6 n = -Es~E6,, K22,s9 = E2,,  K22,s11 = -E4,E6s, K22,912 = E4,E6s, K22,n 12 = - E 2 , ;  

K23,22 E~s, K23,26 E3sEss, K23,2a EasE4~, K23,212 E3sE6~, K2a,66 E 2 

K23,6s -- E4~Ess, K23,612 - EssE6~, K23,88 -- E2s, K23,sI2 = E4sE6s, K23,1212 = E2s �9 

Numerical Integration Over the Element. In our program the definite integrals in expressions 

(7) and (8) are calculated by the Gauss method  using the formulas 

0 - - 1  - -  

In the case of 3-point integration, we have 

H1 = 0.555555555555556, Zl = 0.774596669241483, 
H2 = 0.888888888888889, x2 = 0, 
H3 = 0.555555555555556, x3 = -0.774596669241483, 

and for 4-point integration, 

H1 --0.347854845137454, xl = 0.861136311594053, 
//2 = 0.652145154862546, x2 -- 0.339981043584856, 
//3 = 0.652145154862546, x3 = -0.339981043584856, 
//4 -- 0.347854845137454, x4 = -0.861136311594053. 

C o o r d i n a t e  T r a n s f o r m .  The general Hessian matr ix and the strain-energy gradient of the structure 
are constructed in the usual fashion by transforming the Hessian matrix and the potential-energy gradients 
of individual bar  elements from the local {x, y ,z}  axes into the global Cartesian sys tem {x', y', z'} (Fig. 1) 
with subsequent  summation.  The  vectors Ge and matrices He are transformed by the formulas 

G '  e = N t G e ,  H'~ = N t H e N ,  
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where (,,, o o o / (,... ,., ,...) 
N =  0 [/] 0 0 

0 0 [/] 0 ; [ / ]=  l,=, ly e l,=, ; 
o o o [ z ]  t.=' t.e t..' 

and x, y, and z are the coordinates of nodes 0 or 1 of the bar finite element. 
The vector r~ = {lye,, lyy,, lyz, } determines the direction of the local y axis, and the vector r~ = 

{lz=, , Izy, , l=e} is found from the vector product r3 = rl x rz, rl  = {Iz,, , Iz~ , lze }. 
Since matrix N is orthogonal, the inverse transformation of the vector from the global to the local. 

system, which is required for calculating the nonlinear vectors and matrices in the iteration procedure, is 
performed by the formula ue = Nu~. 

A l g o r i t h m  of  I nves t i ga t i on .  The Newton-Kantorovich iterative method is described by the formulas 

H ( u n ) 6 u  '` = P - G(u'=), u "+1 = u" + 6 u " .  

As a first approximation of u 1 , we can use either the zero vector or the solution for the previous loading 
step. The convergence can be controlled by three parameters: 
(1) the maximum relative error 

A 1 = max 

where m is the dimension of the vectors u "+] and u"; 
(2) the maximum absolute error 

_- 6< ,  16u  I 
and (3) the truncation norm 

I 6u,'.' 

= max 16u~{; l~<i~<rn 

i n 
i =1  

The stability of the structure is analyzed using the energy criterion which is reduced to control of 
the positiveness of the elements of diagonal matrix D in the L t D L  expansion of the Hessian matrix H. The 
appearance of at least one nonpositive element indicates that the structure is in an unstable equilibrium state. 

To study stability in the initial linear state it will suffice to perform two iterations with a zero vector 
as a first approximation at each loading level. The appearance of negative elements in matrix D in the second 
iteration indicates the unstable equilibrium of the structure at this loading level. 

Ca l cu l a t i ons .  The algorithm and the program developed from it were tested in stability analysis of 
a hinged circular bar under axial compression. The length of the bar was 100 cm, the cross-section diameter 
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was 1 cm, and the material used was duralumin. 
Approximating the bar by one finite element we obtain a critical load that is 25% higher than the 

Euler load: 

~r2 E J  
P c -  - -  L 2 ' 

where E J  is the minimum bending stiffness and L is the length of the element. Approximating by two elements, 
we obtain a critical load that is only 0.5% higher than the theoretical value. 

The distribution of moments over bar length was tested using the problem of cantilevered bending. As 
an example, we also considered a spatikl truss consisting of steel hollow bars of 50 mm outside and 48 mm 
inside diameters (Fig. 2). The truss was hinged at nodes 1-4. 

Figure 3 shows the deformed state of this truss with a concentrated force applied at node 15. There is 
no loss of stability within the elastic range of material (for force P not greater than 150,000 N). The theoretical 
critical load is 550,000 N. 
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